The check matrix of a [106,94,6]4 (dual distance 25).

The first 11 rows and 81 columns are the check matrix of a [81,70,6]4 (dual distance 42).

For more information see Inverting construction Y1 and New code parameters from Reed-Solomon subfield codes for the [81,70,6]4.

1312222332213101132121101320301111021122311023322312133210000000000323221302023120213312213200132223012122
2200333012313013030101213322210223111230002110132110130201000000000120210330233010123330201321001303122130
2020033301231301330010121332202231211102300211021131012300100000000212232013211320113100333331312111133231
0121330223202332100233210003320132213312112010022100312200010000000322310211130220102032002100133220113102
2131200131001031232211123130201100113110033230112103223200001000000231112120212120011011203033310303210233
1222031232032200033132211103211333102010330331230321000300000100000013101212332130000110221210131202021102
1022203123203220300313221110312331310200133033103232103000000010000111010110103200000001120010113200301321
2233331133212021322322021301220022322313220311123332132100000001000000110012112220000000001110010122033303
2201033100000201122030210201033303023003212233030111120100000000100000001022302110000000000001112333031313
2331022331321010001130102122213012200311220123220110221100000000010000000111101230000000000000000011100033
2230121002132302020003102111200111033213032303021033013200000000001000000000011110000000000000000000123333
0000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111111111111111111

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some codes | home |